

THE
SCRUM
PRIMER

Pete Deemer
Scrum Training Institute (ScrumTI.com)

Gabrielle Benefield
Scrum Training Institute (ScrumTI.com)

Craig Larman
craiglarman.com

Bas Vodde
Odd-e.com

version 1.2

2

A note to readers: There are many concise descriptions of Scrum available online, and this
primer aims to provide the next level of detail on the practices. It is not intended as the final
step in a Scrum education; teams that are considering adopting Scrum are advised to equip
themselves with Ken Schwaber’s Agile Project Management with Scrum or Agile Software Development
with Scrum, and take advantage of the many excellent Scrum training and coaching options that
are available; full details are at scrumalliance.org. Our thanks go to Ken Schwaber, Dr. Jeff
Sutherland, and Mike Cohn for their generous input.

© 2010 Pete Deemer, Gabrielle Benefield, Craig Larman, Bas Vodde

3

Traditional Software Development

The traditional way to build software, used by companies big and small, was a sequential life
cycle commonly known as “the waterfall.” There are many variants (such as the V-Model), but
it typically begins with a detailed planning phase, where the end product is carefully thought
through, designed, and documented in great detail. The tasks necessary to execute the design
are determined, and the work is organized using tools such as Gantt charts and applications
such as Microsoft Project. The team arrives at an estimate of how long the development will
take by adding up detailed estimates of the individual steps involved. Once stakeholders have
thoroughly reviewed the plan and provided their approvals, the team starts to work. Team
members complete their specialized portion of the work, and then hand it off to others in
production-line fashion. Once the work is complete, it is delivered to a testing organization
(some call this Quality Assurance), which completes testing prior to the product reaching the
customer. Throughout the process, strict controls are placed on deviations from the plan to
ensure that what is produced is actually what was designed.

This approach has strengths and weaknesses. Its great strength is that it is supremely logical –
think before you build, write it all down, follow a plan, and keep everything as organized as
possible. It has just one great weakness: humans are involved.

For example, this approach requires that the good ideas all come at the beginning of the
release cycle, where they can be incorporated into the plan. But as we all know, good ideas
appear throughout the process – in the beginning, the middle, and sometimes even the day
before launch, and a process that does not permit change will stifle this innovation. With the
waterfall, a great idea late in the release cycle is not a gift, it’s a threat.

The waterfall approach also places a great emphasis on writing things down as a primary
method for communicating critical information. The very reasonable assumption is that if I
can write down on paper as much as possible of what’s in my head, it will more reliably make
it into the head of everyone else on the team; plus, if it’s on paper, there is tangible proof that
I’ve done my job. The reality, though, is that most of the time these highly detailed 50-page
requirements documents just do not get read. When they do get read, the misunderstandings
are often compounded. A written document is an incomplete picture of my ideas; when you
read it, you create another abstraction, which is now two steps away from what I think I meant
to say at that time. It is no surprise that serious misunderstandings occur.

Something else that happens when you have humans involved is the hands-on “aha” moment
– the first time that you actually use the working product. You immediately think of 20 ways
you could have made it better. Unfortunately, these very valuable insights often come at the
end of the release cycle, when changes are most difficult and disruptive – in other words, when
doing the right thing is most expensive, at least when using a traditional method.

Humans are not able to predict the future. For example, your competition makes an
announcement that was not expected. Unanticipated technical problems crop up that force a
change in direction. Furthermore, people are particularly bad at planning uncertain things far
into the future – guessing today how you will be spending your week eight months from now
is something of a fantasy. It has been the downfall of many a carefully constructed Gantt chart.

In addition, a sequential life cycle tends to foster an adversarial relationship between the
people that are handing work off from one to the next. “He’s asking me to build something
that’s not in the specification.” “She’s changing her mind.” “I can’t be held responsible for
something I don’t control.” And this gets us to another observation about sequential

4

development – it is not much fun. The waterfall model is a cause of great misery for the
people who build products. The resulting products fall well short of expressing the creativity,
skill, and passion of their creators. People are not robots, and a process that requires them to
act like robots results in unhappiness.

A rigid, change-resistant process produces mediocre products. Customers may get what they
first ask for (at least two translation steps removed), but is it what they really want once they
see the product? By gathering all the requirements up front and having them set in stone, the
product is condemned to be only as good as the initial idea, instead of being the best once
people have learned or discovered new things.

Many practitioners of a sequential life cycle experience these shortcomings again and again.
But, it seems so supremely logical that the common reaction is to turn inward: “If only we did
it better, it would work” – if we just planned more, documented more, resisted change more,
everything would work smoothly. Unfortunately, many teams find just the opposite: the harder
they try, the worse it gets! There are also management teams that have invested their
reputation – and many resources – in a waterfall model; changing to a fundamentally different
model is an apparent admission of having made a mistake. And Scrum is fundamentally
different...

Agile Development and Scrum
The agile family of development methods were born out of a belief that an approach more
grounded in human reality – and the product development reality of learning, innovation, and
change – would yield better results. Agile principles emphasize building working software that
people can get hands on quickly, versus spending a lot of time writing specifications up front.
Agile development focuses on cross-functional teams empowered to make decisions, versus
big hierarchies and compartmentalization by function. And it focuses on rapid iteration, with
continuous customer input along the way. Often when people learn about agile development
or Scrum, there’s a glimmer of recognition – it sounds a lot like back in the start-up days, when
we “just did it.”

By far the most popular agile method is Scrum. It was strongly influenced by a 1986 Harvard
Business Review article on the practices associated with successful product development groups;
in this paper the term “Rugby” was introduced, which later morphed into “Scrum” in Wicked
Problems, Righteous Solutions (1991, DeGrace and Stahl) relating successful development to the
game of Rugby in which a self-organizing team moves together down the field of product
development. It was then formalized in 1993 by Ken Schwaber and Dr. Jeff Sutherland. Scrum
is now used by companies large and small, including Yahoo!, Microsoft, Google, Lockheed
Martin, Motorola, SAP, Cisco, GE, CapitalOne and the US Federal Reserve. Many teams using
Scrum report significant improvements, and in some cases complete transformations, in both
productivity and morale. For product developers – many of whom have been burned by the
“management fad of the month club” – this is significant. Scrum is simple and powerful.

Scrum Summary
Scrum is an iterative, incremental framework for projects and product or application
development. It structures development in cycles of work called Sprints. These iterations are
no more than one month each, and take place one after the other without pause. The Sprints
are timeboxed – they end on a specific date whether the work has been completed or not, and
are never extended. At the beginning of each Sprint, a cross-functional team selects items

5

(customer requirements) from a prioritized list. The team commits to complete the items by
the end of the Sprint. During the Sprint, the chosen items do not change. Every day the team
gathers briefly to inspect its progress, and adjust the next steps needed to complete the work
remaining. At the end of the Sprint, the team reviews the Sprint with stakeholders, and
demonstrates what it has built. People obtain feedback that can be incorporated in the next
Sprint. Scrum emphasizes working product at the end of the Sprint that is really “done”; in the
case of software, this means code that is integrated, fully tested and potentially shippable. Key
roles, artifacts, and events are summarized in Figure 1.

A major theme in Scrum is “inspect and adapt.” Since development inevitably involves
learning, innovation, and surprises, Scrum emphasizes taking a short step of development,
inspecting both the resulting product and the efficacy of current practices, and then adapting
the product goals and process practices. Repeat forever.

Figure 1. Scrum

Scrum Roles
In Scrum, there are three roles: The Product Owner, The Team, and The ScrumMaster.
Together these are known as The Scrum Team. The Product Owner is responsible for
maximizing return on investment (ROI) by identifying product features, translating these into
a prioritized list, deciding which should be at the top of the list for the next Sprint, and
continually re-prioritizing and refining the list. The Product Owner has profit and loss
responsibility for the product, assuming it is a commercial product. In the case of an internal
application, the Product Owner is not responsible for ROI in the sense of a commercial

6

product (that will generate revenue), but they are still responsible for maximizing ROI in the
sense of choosing – each Sprint – the highest-business-value lowest-cost items. In practice,
‘value’ is a fuzzy term and prioritization may be influenced by the desire to satisfy key
customers, alignment with strategic objectives, attacking risks, improving, and other factors.
In some cases, the Product Owner and the customer are the same person; this is common for
internal applications. In others, the customer might be millions of people with a variety of
needs, in which case the Product Owner role is similar to the Product Manager or Product
Marketing Manager position in many product organizations. However, the Product Owner is
somewhat different than a traditional Product Manager because they actively and frequently
interact with the Team, personally offering the priorities and reviewing the results each two- or
four-week iteration, rather than delegating development decisions to a project manager. It is
important to note that in Scrum there is one and only one person who serves as – and has the
final authority of – Product Owner, and he or she is responsible for the value of the work.

The Team builds the product that the Product Owner indicates: the application or website,
for example. The Team in Scrum is “cross-functional” – it includes all the expertise necessary
to deliver the potentially shippable product each Sprint – and it is “self-organizing” (self-
managing), with a very high degree of autonomy and accountability. The Team decides what to
commit to, and how best to accomplish that commitment; in Scrum lore, the Team is known
as “Pigs” and everyone else in the organization are “Chickens” (which comes from a joke
about a pig and a chicken deciding to open a restaurant called “Ham and Eggs,” and the pig
having second thoughts because “he would be truly committed, but the chicken would only be
involved”).

The Team in Scrum is seven plus or minus two people, and for a software product the Team
might include people with skills in analysis, development, testing, interface design, database
design, architecture, documentation, and so on. The Team develops the product and provides
ideas to the Product Owner about how to make the product great. In Scrum the Teams are
most productive and effective if all members are 100 percent dedicated to the work for one
product during the Sprint; avoid multitasking across multiple products or projects. Stable
teams are associated with higher productivity, so avoid changing Team members. Application
groups with many people are organized into multiple Scrum Teams, each focused on different
features for the product, with close coordination of their efforts. Since one team often does all
the work (planning, analysis, programming, and testing) for a complete customer-centric
feature, Teams are also known as feature teams.

The ScrumMaster helps the product group learn and apply Scrum to achieve business value.
The ScrumMaster does whatever is in their power to help the Team and Product Owner be
successful. The ScrumMaster is not the manager of the Team or a project manager; instead, the
ScrumMaster serves the Team, protects them from outside interference, and educates and
guides the Product Owner and the Team in the skillful use of Scrum. The ScrumMaster makes
sure everyone (including the Product Owner, and those in management) understands and
follows the practices of Scrum, and they help lead the organization through the often difficult
change required to achieve success with agile development. Since Scrum makes visible many
impediments and threats to the Team’s and Product Owner’s effectiveness, it is important to
have an engaged ScrumMaster working energetically to help resolve those issues, or the Team
or Product Owner will find it difficult to succeed. There should be a dedicated full-time
ScrumMaster, although a smaller Team might have a team member play this role (carrying a
lighter load of regular work when they do so). Great ScrumMasters can come from any
background or discipline: Engineering, Design, Testing, Product Management, Project
Management, or Quality Management.

7

The ScrumMaster and the Product Owner cannot be the same individual; at times, the
ScrumMaster may be called upon to push back on the Product Owner (for example, if they try
to introduce new deliverables in the middle of a Sprint). And unlike a project manager, the
ScrumMaster does not tell people what to do or assign tasks – they facilitate the process,
supporting the Team as it organizes and manages itself. If the ScrumMaster was previously in a
position managing the Team, they will need to significantly change their mindset and style of
interaction for the Team to be successful with Scrum.

Note there is no role of project manager in Scrum. This is because none is needed; the
traditional responsibilities of a project manager have been divided up and reassigned among
the three Scrum roles. Sometimes an (ex-)project manager can step into the role of
ScrumMaster, but this has a mixed record of success – there is a fundamental difference
between the two roles, both in day-to-day responsibilities and in the mindset required to be
successful. A good way to understand thoroughly the role of the ScrumMaster, and start to
develop the core skills needed for success, is the Scrum Alliance’s Certified ScrumMaster
training.

In addition to these three roles, there are other contributors to the success of the product,
including functional managers (for example, an engineering manager). While their role changes
in Scrum, they remain valuable. For example:

• they support the Team by respecting the rules and spirit of Scrum

• they help remove impediments that the Team and Product Owner identify

• they make their expertise and experience available

In Scrum, these individuals replace the time they previously spent playing the role of “nanny”
(assigning tasks, getting status reports, and other forms of micromanagement) with time as
“guru” and “servant” of the Team (mentoring, coaching, helping remove obstacles, helping
problem-solve, providing creative input, and guiding the skills development of Team
members). In this shift, managers may need to change their management style; for example,
using Socratic questioning to help the Team discover the solution to a problem, rather than
simply deciding a solution and assigning it to the Team.

Starting Scrum
The first step in Scrum is for the Product Owner to articulate the product vision. Eventually,
this evolves into a refined and prioritized list of features called the Product Backlog. This
backlog exists (and evolves) over the lifetime of the product; it is the product road map
(Figure 2). At any point, the Product Backlog is the single, definitive view of “everything that
could be done by the Team ever, in order of priority”. Only a single Product Backlog exists;
this means the Product Owner is required to make prioritization decisions across the entire
spectrum, representing the interest of stakeholders and influenced by the team.

8

Figure 2. The Product Backlog

The Product Backlog includes a variety of items, primarily new customer features (“enable all
users to place book in shopping cart”), but also engineering improvement goals (“rework the
transaction processing module to make it scalable”), exploratory or research work (“investigate
solutions for speeding up credit card validation”), and, possibly, known defects (“diagnose and
fix the order processing script errors”), if there are only a few problems. (A system with many
defects usually has a separate defect tracking system.) The Product Backlog can be articulated
in any way that is clear and sustainable, though either Use Cases or “user stories” are often
used to describe the Product Backlog items in terms of their value to the end user of the
product.

The subset of the Product Backlog that is intended for the current release is known as the
Release Backlog, and in general, this portion is the primary focus of the Product Owner.

The Product Backlog is continuously updated by the Product Owner to reflect changes in the
needs of the customer, new ideas or insights, moves by the competition, technical hurdles that
appear, and so forth. The Team provides the Product Owner with estimates of the effort
required for each item on the Product Backlog. In addition, the Product Owner is responsible
for assigning a business value estimate to each individual item. This is usually an unfamiliar
practice for a Product Owner. As such, it is something a ScrumMaster may help the Product
Owner learn to do. With these two estimates (effort and value) and perhaps with additional
risk estimates, the Product Owner prioritizes the backlog (actually, usually just the Release
Backlog subset) to maximize ROI (choosing items of high value with low effort) or
secondarily, to reduce some major risk. As will be seen, these effort and value estimates may
be refreshed each Sprint as people learn; consequently, this is a continuous re-prioritization
activity as the Product Backlog is ever-evolving.

Scrum does not define techniques for expressing or prioritizing items in the Product Backlog
and it does not define an estimation technique. A common technique is to estimate in terms
of relative size (factoring in effort, complexity, and uncertainty) using a unit of “story points”
or simply “points”.

Over time, a Team tracks how much work it can do each Sprint; for example, averaging 26
points per Sprint. With this information they can project a release date to complete all features,
or how many features can be completed by a fixed date, if the average continues and nothing
changes. This average is called the “velocity” of the team. Velocity is expressed in the same
units as the Product Backlog item size estimates.

9

The items in the Product Backlog can vary significantly in size or effort. Larger ones are
broken into smaller items during the Product Backlog Refinement workshop or the Sprint
Planning Meeting, and smaller ones may be consolidated. The Product Backlog items for the
upcoming next several Sprints should be small and fine-grained enough that they are
understood by the Team, enabling commitments made in the Sprint Planning meeting to be
meaningful; this is called an “actionable” size.

One of the myths about Scrum is that it prevents you from writing detailed specifications; in
reality, it is up to the Product Owner and Team to decide how much detail is required, and this
will vary from one backlog item to the next, depending on the insight of the Team, and other
factors. State what is important in the least amount of space necessary – in other words, do not
describe every possible detail of an item, just make clear what is necessary for it to be
understood. Low priority items, far from being implemented and usually “coarse grained” or
large, have less requirements details. High priority and fine-grained items that will soon be
implemented tend to have more detail.

Sprint Planning
At the beginning of each Sprint, the Sprint Planning Meeting takes place. It is divided into
two distinct sub-meetings, the first of which is called Sprint Planning Part One.

In Sprint Planning Part One, the Product Owner and Team (with facilitation from the
ScrumMaster) review the high-priority items in the Product Backlog that the Product Owner is
interested in implementing this Sprint. They discuss the goals and context for these high-
priority items on the Product Backlog, providing the Team with insight into the Product
Owner’s thinking. The Product Owner and Team also review the “Definition of Done” (which
was established earlier) that all items must meet, such as, “Done means coded to standards,
reviewed, implemented with unit test-driven development (TDD), tested with 100 percent test
automation, integrated, and documented.” Part One focuses on understanding what the
Product Owner wants. According to the rules of Scrum, at the end of Part One the (always
busy) Product Owner may leave although they must be available (for example, by phone)
during the next meeting. However, they are welcome to attend Part Two...

Sprint Planning Part Two focuses on detailed task planning for how to implement the items
that the Team decides to take on. The Team selects the items from the Product Backlog they
commit to complete by the end of the Sprint, starting at the top of the Product Backlog (in
others words, starting with the items that are the highest priority for the Product Owner) and
working down the list in order. This is a key practice in Scrum: The Team decides how much
work it will commit to complete, rather than having it assigned to them by the Product Owner.
This makes for a more reliable commitment because the Team is making it based on its own
analysis and planning, rather than having it decided by someone else. While the Product
Owner does not have control over how much the Team commits to, he or she knows that the
items the Team is committing to are drawn from the top of the Product Backlog – in other
words, the items that he or she has rated as most important. The Team has the ability to lobby
for items from further down the list; this usually happens when the Team and Product Owner
realize that something of lower priority fits easily and appropriately with the high priority
items.

The Sprint Planning Meeting will often last a number of hours, but no more than eight hours
for a four-week Sprint – the Team is making a serious commitment to complete the work, and
this commitment requires careful thought to be successful. The Team will probably begin the

10

Sprint Planning Part Two by estimating how much time each member has for Sprint-related
work – in other words, their average workday minus the time they spend attending meetings,
doing email, taking lunch breaks, and so on. For most people this works out to 4-6 hours of
time per day available for Sprint-related work. This is the team’s capacity for the upcoming
Sprint. See Figure 3.

Figure 3. Estimating Available Hours

Once the capacity is determined, the Team figures out how many Product Backlog items they
can complete in that time, and how they will go about completing them. This often starts with
a design discussion at a whiteboard. Once the overall design is understood, the Team
decomposes the Product Backlog items into work. The Team starts with the first item on the
Product Backlog – in other words, the Product Owner’s highest priority item – and working
together, breaks it down into individual tasks, which are recorded in a document called the
Sprint Backlog (Figure 4). As mentioned, the Product Owner must be available during Part
Two (such as via the phone) so that clarification is possible. The Team will move sequentially
down the Product Backlog in this way, until it’s used up all its estimated capacity. At the end of
the meeting, the Team will have produced a list of all the tasks with estimates (typically in
hours or fractions of a day).

Scrum encourages multi-skilled workers, rather than only “working to job title” such as a
“tester” only doing testing. In other words, Team members “go to where the work is” and
help out as possible. If there are many testing tasks, then all Team members may help. This
does not imply that everyone is a generalist; no doubt some people are especially skilled in
testing (and so on) but Team members work together and learn new skills from each other.
Consequently, during task generation and estimation in Sprint Planning, it is not necessary –
nor appropriate – for people to volunteer for all the tasks “they can do best.” Rather, it is
better to only volunteer for one task at a time, when it is time to pick up a new task, and to
consider choosing tasks that will on purpose involve learning (perhaps by pair work with a
specialist).

All that said, there are rare times when John may do a particular task because it would take far
too long or be impossible for others to learn – perhaps John is the only person with any
artistic skill to draw pictures. Other Team members could not draw a “stick man” if their life
depended on it. In this rare case – and if it is not rare and not getting rarer as the Team learns,
there is something wrong – it may be necessary to ask if the total planned drawing tasks that
must be done by John are feasible within the short Sprint.

Many Teams also make use of a visual task-tracking tool, in the form of a wall-sized task board
where tasks (written on Post-It Notes) migrate during the Sprint across columns labeled “Not
Yet Started,” “In Progress,” and “Completed.” See Figure 5.

11

Figure 4. Sprint Backlog

Figure 5. Visual Management - Sprint Backlog tasks on the wall

One of the pillars of Scrum is that once the Team makes its commitment, any additions or
changes must be deferred until the next Sprint. This means that if halfway through the Sprint
the Product Owner decides there is a new item he or she would like the Team to work on, he
cannot make the change until the start of the next Sprint. If an external circumstance appears
that significantly changes priorities, and means the Team would be wasting its time if it
continued working, the Product Owner or the Team can terminate the Sprint. The Team
stops, and a new Sprint Planning meeting initiates a new Sprint. The disruption of doing this is
usually great; this serves as a disincentive for the Product Owner or Team to resort to this
dramatic decision.

There is a powerful, positive influence that comes from the Team being protected from
changing goals during the Sprint. First, the Team gets to work knowing with absolute certainty
that its commitments will not change, that reinforces the Team’s focus on ensuring
completion. Second, it disciplines the Product Owner into really thinking through the items he
or she prioritizes on the Product Backlog and offers to the Team for the Sprint.

By following these Scrum rules the Product Owner gains two things. First, he or she has the
confidence of knowing the Team has made a commitment to complete a realistic and clear set

12

of work it has chosen. Over time a Team can become quite skilled at choosing and delivering
on a realistic commitment. Second, the Product Owner gets to make whatever changes he or
she likes to the Product Backlog before the start of the next Sprint. At that point, additions,
deletions, modifications, and re-prioritizations are all possible and acceptable. While the
Product Owner is not able to make changes to the selected items under development during
the current Sprint, he or she is only one Sprint’s duration or less away from making any
changes they wish. Gone is the stigma around change – change of direction, change of
requirements, or just plain changing your mind – and it may be for this reason that Product
Owners are usually as enthusiastic about Scrum as anyone.

Daily Scrum
Once the Sprint has started, the Team engages in another of the key Scrum practices: The
Daily Scrum. This is a short (15 minutes or less) meeting that happens every workday at an
appointed time. Everyone on the Team attends. To keep it brief, it is recommended that
everyone remain standing. It is the Team’s opportunity to synchronize their work and report
to each other on obstacles. In the Daily Scrum, one by one, each member of the Team reports
three (and only three) things to the other members of the Team: (1) What they were able to get done
since the last meeting; (2) what they are planning to finish by the next meeting; and (3) any
blocks or impediments that are in their way. Note that the Daily Scrum is not a status meeting
to report to a manager; it is a time for a self-organizing Team to share with each other what is
going on, to help them coordinate. Someone makes note of the blocks, and the ScrumMaster
is responsible to help Team members resolve them. There is no discussion during the Daily
Scrum, only reporting answers to the three questions; if discussion is required it takes place
immediately after the Daily Scrum in a follow-up meeting, although in Scrum no one is
required to attend this. This follow-up meeting is a common event where the Team adapts to
the information they heard in the Daily Scrum: in other words, another inspect and adapt
cycle. It is generally recommended not to have managers or others in positions of perceived
authority attend the Daily Scrum. This risks making the Team feel “monitored” – under
pressure to report major progress every day (an unrealistic expectation), and inhibited about
reporting problems – and it tends to undermine the Team’s self-management, and invite
micromanagement. It would be more useful for a stakeholder to instead reach out to the
Team following the meeting, and offer to help with any blocks that are slowing the Team’s
progress.

Updating Sprint Backlog & Sprint Burndown Chart
The Team in Scrum is self-managing, and in order to do this successfully, it must know how it
is doing. Every day, the Team members update their estimate of the amount of time
remaining to complete their current task in the Sprint Backlog (Figure 6). Following this
update, someone adds up the hours remaining for the Team as a whole, and plots it on the
Sprint Burndown Chart (Figure 7). This graph shows, each day, a new estimate of how much
work (measured in person hours) remains until the Team’s tasks are finished. Ideally, this is a
downward sloping graph that is on a trajectory to reach “zero effort remaining” by the last day
of the Sprint. Hence it is called a burndown chart. And while sometimes it looks good, often it
does not; this is the reality of product development. The important thing is that it shows the
Team their progress towards their goal, not in terms of how much time was spent in the past
(an irrelevant fact in terms of progress), but in terms of how much work remains in the future –
what separates the Team from their goal. If the burndown line is not tracking downwards

13

towards completion near the end of the Sprint, then the Team needs to adjust, such as to
reduce the scope of the work or to find a way to work more efficiently while still maintaining a
sustainable pace.

While the Sprint Burndown chart can be created and displayed using a spreadsheet, many
Teams find it is more effective to show it on paper on a wall in their workspace, with updates
in pen; this “low-tech/high-touch” solution is fast, simple, and often more visible than a
computer chart.

Figure 6. Daily Updates of Work Remaining on the Sprint Backlog

Figure 7. Sprint Burndown Chart

Product Backlog Refinement
One of the lesser known, but valuable, guidelines in Scrum is that five or ten percent of each
Sprint must be dedicated by the Team to refining (or “grooming”) the Product Backlog. This
includes detailed requirements analysis, splitting large items into smaller ones, estimation of
new items, and re-estimation of existing items. Scrum is silent on how this work is done, but a
frequently used technique is a focused workshop near the end of the Sprint, so that the Team

14

and Product Owner can dedicate themselves to this work without interruption. For a two-
week Sprint, five percent of the duration implies that each Sprint there is a half-day Product
Backlog Refinement workshop. This refinement activity is not for items selected for the
current Sprint; it is for items for the future, most likely in the next one or two Sprints. With
this practice, Sprint Planning becomes relatively simple because the Product Owner and Scrum
Team start the planning with a clear, well-analyzed and carefully estimated set of items. A sign
that this refinement workshop is not being done (or not being done well) is that Sprint
Planning involves significant questions, discovery, or confusion and feels incomplete; planning
work then often spills over into the Sprint itself, which is typically not desirable.

Ending the Sprint
One of the core tenets of Scrum is that the duration of the Sprint is never extended – it ends
on the assigned date regardless of whether the Team has completed the work it committed to.
A Team typically over-commits in its first few Sprints and fails to accomplish its
commitments. Sometimes it then overcompensates and under-commits, and finishes early (in
which case it can ask the Product Owner for more Product Backlog items to work on). But by
the third or fourth Sprint a Team has typically figured out what it is capable of delivering (most
of the time), and they will meet their Sprint goals more reliably after that. Teams are
encouraged to pick one duration for their Sprints (say, two weeks) and not change it. This
helps the Team learn how much it can accomplish, which helps in both estimation and longer-
term release planning. It also helps the Team achieve a rhythm for their work; this is often
referred to as the “heartbeat” of the Team in Scrum.

Sprint Review
After the Sprint ends, there is the Sprint Review, where the Team and the Product Owner
review the Sprint. This is often mislabeled the “demo” but that does not capture the real intent
of this meeting. A key idea in Scrum is inspect and adapt. To see and learn what is going on and
then evolve based on feedback, in repeating cycles. The Sprint Review is an inspect and adapt
activity for the product. It is a time for the Product Owner to learn what is going on with the
product and with the Team (that is, a review of the Sprint); and for the Team to learn what is
going on with the Product Owner and the market. Consequently, the most important element
of the Review is an in-depth conversation between the Team and Product Owner to learn the
situation, to get advice, and so forth. The review includes a demo of what the Team built
during the Sprint, but if the focus of the review is a demo rather than conversation, there is an
imbalance.

A useful – but often overlooked – Scrum guideline is that it the ScrumMaster’s responsibility
to ensure that everyone knows the “Definition of Done” defined for this product or release.
He prevents the team from demonstrating or discussing Product Backlog Items that are not
‘done’ according to the “Definition of Done.” Items that are not ‘done’ go back to the Product
Backlog and will be re-prioritized by the Product Owner. In way, there is transparency
regarding the quality of the work; Teams cannot fake the quality by presenting software that
appears to work well, but may be implemented with a messy pile of poor quality and untested
code.

Present at this meeting are the Product Owner, Team members, and ScrumMaster, plus
customers, stakeholders, experts, executives, and anyone else interested. The demo portion of

15

the Sprint Review is not a “presentation” the Team gives – there is no slideware. A guideline in
Scrum is that no more than 30 minutes should be spent preparing for the review, otherwise it
suggests something is wrong with the work of the Team. It is simply a demo of what has been
built. Anyone present is free to ask questions and give input.

Sprint Retrospective
The Sprint Review involves inspect and adapt regarding the product. The Sprint Retrospective,
which follows the Review, involves inspect and adapt regarding the process. This is a practice
that some Teams skip, and that’s unfortunate, because it’s the main mechanism for taking the
visibility that Scrum provides into areas of potential improvement, and turning it into results.
It’s an opportunity for the Team to discuss what’s working and what’s not working, and agree
on changes to try. The Team and ScrumMaster will attend, and the Product Owner is welcome
but not required to attend. Sometimes the ScrumMaster can act as an effective facilitator for
the retrospective, but it may be better to find a neutral outsider to facilitate the meeting; a
good approach is for ScrumMasters to facilitate each others’ retrospectives, which enables
cross-pollination among Teams.

There are many techniques for conducting a Sprint Retrospective, and the book Agile
Retrospectives (Derby, Larsen 2006) provides a useful catalogue of techniques. A simple way to
structure the discussion is to draw two columns on a whiteboard, labeled “What’s Working
Well” and “What Could Work Better” – and then go around the room, with each person
adding one or more items to either list. As items are repeated, check marks are added next to
them, so the common items become clear. Then the Team looks for underlying causes, and
agrees on a small number of changes to try in the upcoming Sprint, along with a commitment
to review the results at the next Sprint Retrospective.

A useful practice at the end of the Retrospective is for the Team to label each of the items in
each column with either a “C” if it is caused by Scrum (in other words, without Scrum it would
not be happening), or an “E” if it is exposed by Scrum (in other words, it would be happening
with or without Scrum, but Scrum makes it known to the Team), or a “U” if it’s unrelated to
Scrum (like the weather). The Team may find a lot of C’s on the “What’s Working Well” side
of the board, and a lot of E’s on the “What Could Work Better ”; this is good news, even if
the “What Could Work Better” list is a long one, because the first step to solving underlying
issues is making them visible, and Scrum is a powerful catalyst for that.

Updating Release Backlog & Burndown Chart
At this point, some items have been finished, some have been added, some have new
estimates, and some have been dropped from the release goal. The Product Owner is
responsible for ensuring that these changes are reflecting in the Release Backlog (and more
broadly, the Product Backlog). In addition, Scrum includes a Release Burndown chart that
shows progress towards the release date. It is analogous to the Sprint Burndown chart, but is
at the higher level of items (requirements) rather than fine-grained tasks. Since a new Product
Owner is unlikely to know why or how to create this chart, this is another opportunity for a
ScrumMaster to help the Product Owner. See Figure 8 and Figure 9 for an example of the
Release Backlog and Release Burndown chart.

16

Figure 8. Release Backlog (a subset of the Product Backlog)

Figure 9. Release Burndown Chart

Starting the Next Sprint
Following the Sprint Review, the Product Owner may update the Product Backlog with any
new insight. At this point, the Product Owner and Team are ready to begin another Sprint
cycle. There is no down time between Sprints – Teams normally go from a Sprint
Retrospective one afternoon into the next Sprint Planning the following morning (or after the
weekend).

One of the principles of agile development is “sustainable pace”, and only by working regular
hours at a reasonable level can Teams continue this cycle indefinitely.

17

Release Sprint
The perfection vision of Scrum is that the product is potentially shippable at the end of each
Sprint, which implies there is no wrap up work required, such as testing or documentation.
The implication is that everything is completely finished every Sprint; that you could actually ship
it or deploy it immediately after the Sprint Review. This means that each increment is a
complete slice of the final product and gives complete transparency to the Product Owner and
stakeholders. They know exactly where they are at the end of every Sprint.

However, many organizations have weak development practices, tools and infrastructure and
cannot achieve this perfection vision, or there are other extenuating circumstances (such as,
“the machine broke”). In this case, there will be some remaining work, such as final
production environment integration testing, and so there will be the need for a “Release
Sprint” to handle this remaining work.

Note that the need for a Release Sprint is a sign of some weakness; the ideal is that it is not
required. When necessary, Sprints continue until the Product Owner decides the product is
almost ready for release, at which point there will be a Release Sprint to prepare for launch. If
the Team has followed good development practices, with continuous refactoring and
integration, and effective testing during each Sprint, there should be little pre-release
stabilization or other wrap-up work required.

Release Planning & Initial Product Backlog
Refinement
A question that is sometimes asked is how, in an iterative model, can long-term release
planning be done. There are two cases to consider: (1) a new product in its first release, and (2)
an existing product in a later release.

In the case of a new product, or an existing product just adopting Scrum, there is the need to do
initial Product Backlog refinement before the first Sprint, where the Product Owner and Team
shape a proper Scrum Product Backlog. This could take a few days or a week, and involves a
vision workshop, some detailed requirements analysis, and estimation of all the items identified
for the first release.

Surprisingly in Scrum, in the case of an established product with an established Product
Backlog, there should not be the need for any special or extensive release planning for the next
release. Why? Because the Product Owner and Team should be doing Product Backlog
refinement every Sprint (five or ten percent of each Sprint), continuously preparing for the
future. This continuous product development mode obviates the need for the dramatic punctuated
prepare-execute-conclude stages one sees in traditional sequential life cycle development.

During an initial Product Backlog refinement workshop and during the continuous backlog
refinement each Sprint, the Team and Product Owner will do release planning, refining the
estimates, priorities, and content as they learn.

Some releases are date-driven; for example: “We will release version 2.0 of our project at a
trade-show on November 10.” In this situation, the Team will complete as many Sprints (and
build as many features) as is possible in the time available. Other products require certain
features to be built before they can be called complete and the product will not launch until
these requirements are satisfied, however long that takes. Since Scrum emphasizes producing

18

potentially shippable code each Sprint, the Product Owner may choose to start doing interim
releases, to allow the customer to reap the benefits of completed work sooner.

Since they cannot possibly know everything up front, the focus is on creating and refining a
plan to give the release broad direction, and clarify how tradeoff decisions will be made (scope
versus schedule, for example). Think of this as the roadmap guiding you towards your final
destination; which exact roads you take and the decisions you make during the journey may be
determined en route.

Most Product Owners choose one release approach. For example, they will decide a release
date, and will work with the Team to estimate the Release Backlog items that can be completed
by that date. In situations where a “fixed price / fixed date / fixed deliverable” commitment is
required – for example, contract development – one or more of those parameters must have a
built-in buffer to allow for uncertainty and change; in this respect, Scrum is no different from
other approaches.

Application or Product Focus
For applications or products – either for the market or for internal use within an organization
– Scrum moves groups away from the older project-centric model toward a continuous
application/product development model. There is no longer a project with a beginning, middle, and
end. And hence no traditional project manager. Rather, there is simply a stable Product Owner
and a long-lived self-managing Team that collaborate in an “endless” series of fixed-length
Sprints, until the product or application is retired. All necessary “project” management work is
handled by the Team and the Product Owner – who is an internal business customer or from
Product Management. It is not managed by an IT manager or someone from a Project
Management Office.

Scrum can also be used for true projects that are one-time initiatives (rather than work to create
or evolve long-lived applications); still, in this case the Team and Product Owner do the
project management.

What if there is insufficient new work from one or more existing applications to warrant a
dedicated long-lived Team for each application? In this case, a stable long-lived Team may take
on items from one application in one Sprint, and then items from another in the next Sprint;
in this situation the Sprints are often quite short, such as one week.

Occasionally, there is insufficient new work even for the prior solution, and the Team may
take on items from several applications during the same Sprint; however, beware this solution as
it may devolve into unproductive multitasking across multiple applications. A basic
productivity theme in Scrum is for the Team to be focused on one product or application for
one Sprint.

Common Challenges
Scrum is not only a concrete set of practices – rather, and more importantly, it is a framework
that provides transparency, and a mechanism that allows “inspect and adapt”. Scrum works by
making visible the dysfunction and impediments that are impacting the Product Owner and
the Team’s effectiveness, so that they can be addressed. For example, the Product Owner may
not really know the market, the features, or how to estimate their relative business value. Or
the Team may be unskillful in effort estimation or development work.

19

The Scrum framework will quickly reveal these weaknesses. Scrum does not solve the
problems of development; it makes them painfully visible, and provides a framework for
people to explore ways to resolve problems in short cycles and with small improvement
experiments.

Suppose the Team fails to deliver what they committed to in the first Sprint due to poor task
analysis and estimation skill. To the Team, this feels like failure. But in reality, this experience
is the necessary first step toward becoming more realistic and thoughtful about its
commitments. This pattern – of Scrum helping make visible dysfunction, enabling the Team
to do something about it – is the basic mechanism that produces the most significant benefits
that Teams using Scrum experience.

One common mistake made, when presented with a Scrum practice that is challenging, is to
change Scrum. For example, Teams that have trouble delivering on their Sprint commitment
might decide to make the Sprint duration extendable, so it never runs out of time – and in the
process, ensure it never has to learn how to do a better job of estimating and managing its
time. In this way, without coaching and the support of an experienced ScrumMaster,
organizations can mutate Scrum into just a mirror image of its own weaknesses and
dysfunction, and undermine the real benefit that Scrum offers: Making visible the good and
the bad, and giving the organization the choice of elevating itself to a higher level.

Another common mistake is to assume that a practice is discouraged or prohibited just
because Scrum does not specifically require it. For example, Scrum does not require the
Product Owner to set a long-term strategy for his or her product; nor does it require engineers
to seek advice from more experienced engineers about complex technical problems. Scrum
leaves it to the individuals involved to make the right decision; and in most cases, both of
these practices (along with many others) are well advised.

Something else to be wary of is managers imposing Scrum on their Teams; Scrum is about
giving a Team space and tools to manage itself, and having this dictated from above is not a
recipe for success. A better approach might begin with a Team learning about Scrum from a
peer or manager, getting comprehensively educated in professional training, and then making a
decision as a Team to follow the practices faithfully for a defined period; at the end of that
period, the Team will evaluate its experience, and decide whether to continue.

The good news is that while the first Sprint is usually very challenging to the Team, the
benefits of Scrum tend to be visible by the end of it, leading many new Scrum Teams to
exclaim: “Scrum is hard, but it sure is a whole lot better than what we were doing before!”

20

Appendix: Terminology

Burn Down
The trend of work remaining across time in a Sprint, a Release, or a Product. The source of the
raw data is the Sprint Backlog and the Product Backlog, with work remaining tracked on the
vertical axis and the time periods (days of a Sprint, or Sprints) tracked on the horizontal axis.

Chicken
Someone who is interested in the project but does not have formal Scrum responsibilities and
accountabilities (Team, Product Owner, ScrumMaster).

Daily Scrum
A short meeting held daily by each Team during which the Team members inspect their work,
synchronize their work and progress and report and impediments to the ScrumMaster for
removal. Follow-on meetings to adapt upcoming work to optimize the Sprint may occur after
the Daily Scrum meetings.

Done
Complete as mutually agreed to by all parties and that conforms to an organization’s standards,
conventions, and guidelines. When something is reported as “done” at the Sprint Review
meeting, it must conform to this agreed definition.

Estimated Work Remaining (Sprint Backlog items)
The number of hours that a Team member estimates remain to be worked on any task. This
estimate is updated at the end of every day when the Sprint Backlog task is worked on. The
estimate is the total estimated hours remaining, regardless of the number of people that
perform the work.

Increment
Product functionality that is developed by the Team during each Sprint that is potentially
shippable or of use to the Product Owner’s stakeholders.

Increment of Potentially Shippable Product Functionality
A complete slice of the overall product or system that could be used by the Product Owner or
stakeholders if they chose to implement it.

Sprint
An iteration, or one repeating cycle of similar work, that produces increment of product or
system. No longer than one month and usually more than one week. The duration is fixed
throughout the overall work and all teams working on the same system or product use the
same length cycle.

Pig
Someone exercising one of the three Scrum roles (Team, Product Owner, ScrumMaster) who
has made a commitment and has the authority to fulfill it.

21

Product Backlog
A prioritized list of requirements with estimated times to turn them into completed product
functionality. Estimates are more precise the higher an item is in the Product Backlog priority..
The list emerges, changing as business conditions or technology changes.

Product Backlog Item
Functional requirements, non-functional requirements, and issues, prioritized in order of
importance to the business and dependencies and estimated. The precision of the estimate
depends on the priority and granularity of the Product Backlog item, with the highest priority
items that may be selected in the next Sprint being very granular and precise.

Product Owner
The person responsible for managing the Product Backlog so as to maximize the value of the
project. The Product Owner is responsible for representing the interests of everyone with a
stake in the project and its resulting product.

Scrum
Not an acronym, but mechanisms in the game of rugby for getting an out-of-play ball back
into play.

ScrumMaster
The person responsible for the Scrum process, its correct implementation, and the
maximization of its benefits.

Sprint Backlog
A list of tasks that defines a Team’s work for a Sprint. The list emerges during the Sprint. Each
task identifies those responsible for doing the work and the estimated amount of work
remaining on the task on any given day during the Sprint.

Sprint Backlog Task
One of the tasks that the Team or a Team member defines as required to turn committed
Product Backlog items into system functionality.

Sprint Planning meeting
A one-day meeting time boxed to eight hours (for a four week Sprint) that initiates every
Sprint. The meeting is divided into two four-hour segments, each also time boxed.. During the
first four hours the Product Owner presents the highest priority Product Backlog to the team.
The Team and Product Owner collaborate to help the Team determine how much Product
Backlog it can turn into functionality during the upcoming Sprint. The Team commits to this
at the end of the first four hours. During the second four hours of the meeting, the Team
plans how it will meet this commitment by designing and then detailing its work as a plan in
the Sprint Backlog.

Sprint Retrospective meeting
A time boxed three-hour meeting facilitated by the ScrumMaster at which the complete Team
discusses the just-concluded Sprint and determines what could be changed that might make
the next Sprint more enjoyable or productive.

22

Sprint Review meeting
A time-boxed four hour meeting at the end of every Sprint where the Team collaborates with
the Product Owner and stakeholders on what just happened in the Sprint. This usually starts
with a demonstration of completed Product Backlog items, a discussion of opportunities,
constraints and findings, and a discussion of what might be the best things to do next
(potentially resulting in Product Backlog changes). Only completed product functionality can
be demonstrated.

Stakeholder
Someone with an interest in the outcome of a project, either because they have funded it, will
use it, or will be affected by it.

Team
A cross-functional group of people that is responsible for managing themselves to develop an
increment of product every Sprint.

Time box
A period of time that cannot be exceeded and within which an event or meeting occurs. For
example, a Daily Scrum meeting is time boxed at fifteen minutes and terminates at the end of
fifteen minutes, regardless. For meetings, it might last shorter. For Sprints, it lasts exactly that
length.

